AC Analysis

Signal x (time function) is alternating for

x(t)=Xmcos(ωt+ϕ),Xm0,ω>0

Xm - amplitude
ω - pulsation
ϕ - phase shift
f=ω2π - frequency
T=1ω - period
rM drawing 2026-01-11-21.39.19.png|500

Important

AC circuit has solutions where alternating signals have the same pulsation

Example

rM drawing 2026-01-11-21.10.46.png|300
i(t)=CuC(t)
e(t)=cos(ωt)[V]

uc(t)=Ucmcos(ωt+ϕ)
uc(t)=Ucmωsin(ωt+ϕ)

e(t)=uc(t)+Ri(t)=uc(t)+RCu(c)(t)
cos(ωt)[V]=Ucmcos(ωt+ϕ)RCUcmωsin(ωt+ϕ)=Ucm1+(ωRC)2cos(ωt+ϕ)

Ucm=1[V]1+(ωRC)2

AC signal notation

2Vcos(ωt)=2Vej0
3Vcos(ωt+π3)=3Vejπ/3
1mAcos(ωtπ4)=1mAejπ/4

Phasors

Alternating signal x(t)=Xmcos(ωt+ϕ)
has a phasor X=Xmejϕ=Xm(cosϕ+jsinϕ)

Components

Voltage source

rM drawing 2026-01-11-21.11.29.png|200

Imcos(ωt+ϕ)Imejϕ
Current source

rM drawing 2026-01-11-21.11.51.png

Emcos(ωt+ϕ)Emejϕ
Resistor

u(t)=Umcos(ωt+ϕu)=Ri(t)=RImcos(ωt+ϕi)

U=UmejϕuI=Imejϕi
Inductors

u(t)=Umcos(ωt+ϕu)=Li(t)=ωLImcos(ωt+ϕi+π2)

U=UmejϕuI=ImejϕiU=ωLIejπ2=jωLI
Capacitors

u(t)=Umcos(ωt+ϕi)=Cu(t)=ωCUmcos(ωt+ϕu+π2)

U=UmejϕuI=ImejϕiI=ωCuejπ2=jωCuU=1jωCI

Devices described in time domain by linear differential equations (inductors, capacitors, ...) are governed by linear algebraic equations in the phasor domain

Impedance

rM drawing 2026-01-11-21.40.31.png

AC analysis tools

KCL, KVL
Nodal method
Superposition rule
CDF, VDF

rM drawing 2026-01-11-21.43.22.png

Thevenin and Norton equivalents

rM drawing 2026-01-11-21.43.35.png

Example

rM drawing 2026-01-11-21.44.28.png

Math helper

arg(z1z2)=arg(z1)+arg(z2)
arg(z1z2)=arg(z1)arg(z2)
|a+jb|=a2+b2

arg(a+jb)={π2a=0b>0π2a=0b<0arctan(ba)a>0arctan(ba)+π2a<0